If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2-19y-10=-4y^2
We move all terms to the left:
11y^2-19y-10-(-4y^2)=0
We get rid of parentheses
11y^2+4y^2-19y-10=0
We add all the numbers together, and all the variables
15y^2-19y-10=0
a = 15; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·15·(-10)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-31}{2*15}=\frac{-12}{30} =-2/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+31}{2*15}=\frac{50}{30} =1+2/3 $
| -2a+5+10a-9=0 | | 3(k−47)=72 | | 18+5x+7x=180 | | (2z+9)=(4z-3) | | 40n^2=230^3 | | 7(g-82)=98 | | u/2+7=10 | | 17=3(g+3)+g | | -72+10y=8 | | k/4+9=11 | | (2z+09)=(4z-3) | | 4(n+5)(n+2)=280^3 | | 5x+24=-1 | | 5(x+8)-3=12 | | 19=6x+31 | | 8(2x7)=3 | | 9x+2=641 | | 42=9z | | 4x-4.6=2x+3.2 | | 32x=-340 | | 7-4x=-45 | | 9=u+34/7 | | 6x+1/4x=450 | | 4x-2(x+8)=32 | | 15-3z=12 | | -16+y=-13 | | 4×-9=x+15 | | -9x+0,6=3x+3 | | (4)(n+5)(n+2)=280^3 | | 12-2s=4 | | 10-4+6m-m=1+4m | | 8x+20=121 |